Search results for "P INTERACTIONS"
showing 6 items of 6 documents
PRODUCTION CHARACTERISTICS OF K-0 AND LIGHT MESON RESONANCES IN HADRONIC DECAYS OF THE Z(0)
1995
An analysis of inclusive production of K0and the meson resonances K*±(892), Ï0(770), f0(975) and f2(1270) in hadronic decays of the Z0is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0mesons, 0.712±0.067 K*±(892) and 1.21±0.15Ï0(770) per hadronic Z0decay. The average multiplicities of f0(975) for scaled momentum, xp, in the range 0.05â¤xpâ¤0.6 and of f2(1270) for 0.05â¤xpâ¤1.0 are 0.098±0.016 and 0.170±0.043 respectively. The f0(975) and Ï0(770)xp-spectra have similar shapes. The f2(1270)/Ï0(770) ratio increases with xp. The average multiplicities…
Measurement of inclusive production of light meson resonances in hadronic decays of the Z0
1993
A study of inclusive production of the meson resonances ρ0, K*0 (892), f{hook}0 (975) and f{hook}2 (1270) in hadronic decays of the Z0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ0 0.64 ± 0.24 for the K*0 (892), 0.10 ± 0.04 for the f{hook}0 (975) in the momentum range p > 0.05pbeam (xp > 0.05) and 0.11 ± 0.05 for the f{hook}2 (1270) for xp > 0.1. These values and the corresponding differential cross sections ( 1 σhadr) dσ dxp for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The f{hook}2 (1270) production is overestimated by HERWIG but its xp-shape is correctly reproduced. T…
Searching for hidden sectors in multiparticle production at the LHC
2016
Most signatures of new physics in colliders have been studied so far on the transverse plane with respect to the beam direction. In this work however we study the impact of a hidden sector beyond the Standard Model (SM) on inclusive (pseudo)rapidity correlations and moments of the multiplicity distributions, with special emphasis in the LHC results.
Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC
2020
The study of the strength and behaviour of the antikaon-nucleon ($\mathrm{\overline{K}N}$) interaction constitutes one of the key focuses of the strangeness sector in low-energy Quantum Chromodynamics (QCD). In this letter a unique high-precision measurement of the strong interaction between kaons and protons, close and above the kinematic threshold, is presented. The femtoscopic measurements of the correlation function at low pair-frame relative momentum of (K$^+$ p $\oplus$ K$^-$ $\overline{\mathrm{p}}$) and (K$^-$ p $\oplus$ K$^+$ $\overline{\mathrm{p}}$) pairs measured in pp collisions at $\sqrt{s}$ = 5, 7 and 13 TeV are reported. A structure observed around a relative momentum of 58 Me…
Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC
2011
Measurements are presented from proton–proton collisions at centre-of-mass energies of \sqrt{s} = 0.9 , 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared…
New analysis of ηπ tensor resonances measured at the COMPASS experiment
2018
We present a new amplitude analysis of the $\eta\pi$ $D$-wave in $\pi^- p\to \eta\pi^- p$ measured by COMPASS. Employing an analytical model based on the principles of the relativistic $S$-matrix, we find two resonances that can be identified with the $a_2(1320)$ and the excited $a_2^\prime(1700)$, and perform a comprehensive analysis of their pole positions. For the mass and width of the $a_2$ we find $M=(1307 \pm 1 \pm 6)$~MeV and $\Gamma=(112 \pm 1 \pm 8)$~MeV, and for the excited state $a_2^\prime$ we obtain $M=(1720 \pm 10 \pm 60)$~MeV and $\Gamma=(280\pm 10 \pm 70)$~MeV, respectively.